Groups; permutation groups

Lecture 1

Groups: main properties and examples. Lagrange Theorem and corollaries.

Definition 1. A set G with an operation $*$ is called a group, if the following properties hold:

1) $\forall x, y, z \in G(x * y) * z=x *(y * z)$ (associativity);
2) $\exists e \in G \forall x \in G e * x=x * e=x$ (this element e is called a unity of the group G);
3) $\forall x \in G \exists y \in G x * y=y * x=e$ (this element y is called inverse for x and is denoted by x^{-1}).

If in the group G additionally the property of commutativity

$$
\forall x, y \in G x * y=y * x
$$

holds, then G is called an Abelian group.
The $\operatorname{sign} *$ is often omitted, the result of applying the operation $*$ to the elements x and y can be written by $x y$.
Problem 1. In any group a unity is unique.
Problem 2. In a group G for any elements $a, b \in G$ a solution of the equation

$$
a x=b \quad(x a=b)
$$

exists and is unique.
Problem 3. Find examples of groups of 2, 3, 4 elements. Find and example of any non-Abelian group. Is there any non-Abelian group of 4 elements?
Definition 2. Two groups $(G, *)$ and (H, \circ) are called isomorphic, if there exists a one-to-one mapping $\Phi: G \rightarrow H$ such that

$$
\forall x, y \in G \Phi(x * y)=\Phi(x) \circ \Phi(y)
$$

Problem 4. The relation to be isomorphic groups is an equivalence relation.
Problem 5. Find all groups of $2,3,4$ elements which are not isomorphic to each other.
Problem 6. What following sets with operations are groups?
a) $(A,+)$, where A is one of the sets $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$;
b) (A, \cdot), where A is one of the sets $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$;
c) $\left(A_{0}, \cdot\right)$, where A is one of the sets $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$, and $A_{0}=A \backslash\{0\}$;
d) the numbers $\{0,1,2, \ldots, n-2, n-1\}$ with the operation of addition modulo n;
e) the numbers $\{1,2, \ldots, n-2, n-1\}$ with the operation of multiplication modulo n ?

Problem 7. What of the following sets of mappings from the set $M=\{1,2, \ldots, n\}$ into itself form a group (under the operation of composition):
a) the set of all mappings;
b) the set of all injective (surjective, bijective) mappings?

DEfinition 3. The group from the part b) of the previous problem is called the permutation group of the order n and is denoted by \mathbf{S}_{n}.
Problem 8. How many elements are there in the group \mathbf{S}_{n} ?
Problem 9. Is the group \mathbf{S}_{n} Abelian?
Problem 10. Introduce the natural notion of degree of an element $g \in G: g^{k}$. Proof usual properties of degree: $\left(g^{n}\right)^{m}=g^{n m}, g^{n} g^{m}=g^{n+m}$. Does the property $g^{n} h^{n}=(g h)^{n}$ hold?
Definition 4. A subset H of a group G is called a subgroup, if

$$
\forall x, y \in H x y \in H \wedge x^{-1} \in H
$$

Problem 11. The following two statements about a subset H of a group G are equivalent:

1) H is a subgroup of G;
2) $\forall x, y \in H x y^{-1} \in H$.

Problem 12. Prove that any finite subset of a group closed under multiplication is a subgroup. Is it true for infinite subsets?
Problem 13. Find all subgroups of the group of integer numbers $(\mathbb{Z},+)$; of the permutation group \mathbf{S}_{3}.
Definition 5. Let H be a subgroup of a group $G, g \in G$. Then the right (left) residue class of g by H is the set

$$
g H=\{g h \mid h \in H\} \quad(H g=\{h g \mid h \in H\})
$$

Problem 14. Let G be a group, H its subgroup, $g_{1}, g_{2} \in G$. Then either $g_{1} H=g_{2} H$, or $g_{1} H \cap g_{2} H=\emptyset$.
Problem 15. Let g_{1}, g_{2} be elements of a group G and H_{1}, H_{2} be subgroups of G. Prove that the following properties are equivalent:
a) $g_{1} H_{1} \subseteq g_{2} H_{2}$;
b) $H_{1} \subseteq H_{2}$ and $g_{2}^{-1} g_{1} \in H_{2}$.

Problem 16. Let g_{1}, g_{2} be elements of a group G, H_{1}, H_{2} be subgroups of G. Prove that the nonempty set $g_{1} H_{1} \cap g_{2} H_{2}$ is the left residue class of G by $H_{1} \cap H_{2}$.
Problem 17^{*}. Let H be a subgroup of a group $G, g_{1}, g_{2} \in G, g_{1} H \subseteq H g_{2}$. Is it true that $g_{1} H=H g_{2}$?
Problem 18 (Lagrange Theorem). If G is a finite group, H is its subgroup, then the number of right (left) residue classes of G by H is $|G|:|H|$ (this number is called the index of H in $G)$. Therefore the order of a subgroup always divides the order of a group.

Definition 6. The order of an element g of a group G is the minimal natural number $n>0$ such that $g^{n}=e$. If such a number does not exist, the order of g is supposed to be infinite.
Problem 19. In a finite group the order of any element divides the order of the group.
Problem 20 (Small Fermat Theorem). For any simple number p and any natural a

$$
a^{p} \equiv a \quad \bmod p
$$

Problem 21. Find all non-isomorphic groups of the order p (p is simple).
Problem 22. If in a group G for any $g \in G$ we have $g^{2}=e$, then G is an Abelian group.
Problem 23. Find all non-isomorphic groups of the order 6 .

Problem 24. Find an example of an infinite non-Abelian group.
Problem 25. Is there an infinite group with all elements of finite order?
Problem 26. Find all finite groups containing the greatest proper subgroup.

