Sums of squares and Gaussian integers

Let p be an odd prime number. A number a such that $0<a<p$, is said to be a quadratic residue modulo p (квадратичный вычет по модулю p) if a is congruent (сравнимо) to a perfect square (полный квадрат) modulo p, and a quadratic nonresidue modulo p (квадратичный невычет по модулю p) otherwise.
Exercise 1. Show that there are exactly $(p-1) / 2$ quadratic residues and $(p-1) / 2$ quadratic nonresidues modulo p.

Exercise 2. Show that -1 is a quadratic residue modulo p if and only if there exist a and b such that $a^{2}+b^{2}$ is divisible by p.

Exercise 3. a) (Wilson's theorem.) Prove that $(p-1)!+1$ is divisible by p.
b) Show that -1 is a quadratic residue modulo p if and only if $p=4 k+1$.

Hint. x is a quadratic residue if and only if x^{-1} a quadratic residue (prove this!).
Exercise 4. Let $p=4 k+3$. Show that if $a^{2}+b^{2}$ is divisible by p, then both a and b are divisible by p.
Exercise 5. a) Show that representability of an integer as a sum of three squares is not multiplicative: find x and y such that each of them is representable as the sum of three squares, while $x y$ is not representable in such a form.
b^{*}) What about sums of four squares?
Exercise 6. Decompose the following Gaussian integers into primes in $\mathbb{Z}[i]$:
a) 13 ; b) 46 ; c) 1001 ; d) 2013 ; e) $47+i$.

Exercise 7. How many solutions in \mathbb{Z} does the equation $x^{2}+y^{2}=5 \cdot 13 \cdot 17$ have?

